<u>Exercise 8.1 (Revised) - Chapter 8 - Quadrilaterals - Ncert Solutions class 9 -</u> <u>Maths</u>

Updated On 11-02-2025 By Lithanya

Chapter 8 - Quadrilaterals - NCERT Solutions for Class 9 Maths

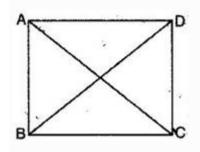
Ex 8.1 Question 1.

If the diagonals of a parallelogram are equal, show that it is a rectangle.

Answer.

Given: ABCD is a parallelogram with diagonal AC = diagonal BD

To prove: ABCD is a rectangle.



Proof: In triangles ABC and ABD, AB = AB[Common] AC = BD[Given] AD = BC[opp. Sides of $a||_{gm}]$ $\therefore \triangle ABC \cong \triangle BAD[By SSS congruency]$ $\Rightarrow \angle DAB = \angle CBA[By C.P.C.T.]$

But $\angle DAB + \angle CBA = 180^{\circ}$ [$:: AD \parallel_{BC}$ and AB cuts them, the sum of the interior angles of the same side of transversal is 180°]

From eq. (i) and (ii), $\angle \mathrm{DAB} = \angle \mathrm{CBA} = 90^{\circ}$

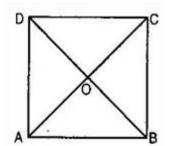
Hence ABCD is a rectangle.

Ex 8.1 Question 2.

Show that the diagonals of a square are equal and bisect each other at right angles.

Answer.

Given: ABCD is a square. AC and BD are its diagonals bisect each other at point O.



Get More Learning Materials Here : 📕

To prove: AC = BD and $AC \perp BD$ at point O.

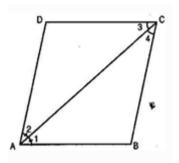
Proof: In triangles ABC and BAD, AB = AB[Common] $\angle ABC = \angle BAD = 90^{\circ}$ BC = AD[Sides of a square] $\therefore \triangle ABC \cong \triangle BAD$ [By SAS congruency] $\Rightarrow AC = BD$ [By C.P.C.T.]Hence proved.

Now in triangles AOB and AOD, AO = AO[Common] AB = AD[Sides of a square] $\therefore \triangle AOB \cong \triangle AOD[By SSS congruency]$ $\angle AOB = \angle AOD[By C.P.C.T.]$

But $\angle AOB + \angle AOD = 180^{\circ}$ [Linear pair] But $\angle AOB + \angle AOD = 180^{\circ}$ [Linear pair] $\therefore \angle AOB = \angle AOD = 90^{\circ}$ $\Rightarrow OA \perp BD$ or $AC \perp BD$ Hence proved.

Ex 8.1 Question 3.

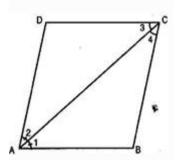
Diagonal AC of a parallelogram ABCD bisects $\angle \mathbf{A}$ (See figure). Show that:



(i) It bisects ∠C also.
(ii) ABCD is a rhombus.

Answer.

Diagonal AC bisects $\angle A$ of the parallelogram ABCD.



(i) Since $AB||_{DC}$ and AC intersects them. $\therefore \angle 1 = \angle 3$ [Alternate angles] Similarly $\angle 2 = \angle 4$ But $\angle 1 = \angle 2$ [Given] $\therefore \angle 3 = \angle 4$ [Using eq. (i), (ii) and (iii)]

Thus AC bisects $\angle C$. (ii) $\angle 2 = \angle 3 = \angle 4 = \angle 1$ $\Rightarrow AD = CD[$ Sides opposite to equal angles] $\therefore AB = CD = AD = BC$

Hence ABCD is a rhombus.

Ex 8.1 Question 4.

ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$. Show that:

(i) ABCD is a square.

(ii) Diagonal BD bisects both \angle B as well as \angle D.

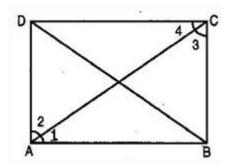
Answer.

ABCD is a rectangle. Therefore $AB = DC \dots \dots$ (i)

 ${\rm And}\;BC=AD$

Also $\angle A = \angle B = \angle C = \angle D = 90^\circ$

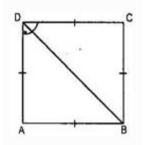
Get More Learning Materials Here : 💴



(i) In $\triangle ABC$ and $\triangle ADC$ $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$ [AC bisects $\angle A$ and $\angle C$ (given)] AC = AC[Common] $\therefore \Delta \mathrm{ABC} \cong \triangle \mathrm{ADC}[\mathrm{By} \ \mathsf{ASA} \ \mathsf{congruency}]$ $\Rightarrow AB = AD$

From eq. (i) and (ii), AB = BC = CD = AD

Hence ABCD is a square.

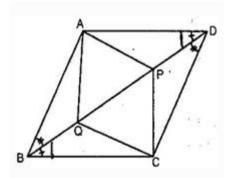


(ii) In $\triangle ABC$ and $\triangle ADC$ AB = BA Since ABCD is a square AD = DC[Since ABCD is a square] BD = BD [Common] $\therefore \Delta ABD \cong \Delta CBD$ [By SSS congruency] $\Rightarrow \angle ABD = \angle CBD [By C.P.C.T.].....(iii)$ And $\angle ADB = \angle CDB[By C.P.C.T.]$ (iv)

From eq. (iii) and (iv), it is clear that diagonal BD bisects both $\angle B$ and $\angle D$.

Ex 8.1 Question 5.

In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (See figure). Show that:



(i) riangle APD \cong riangle CQB (ii) $\mathbf{AP} = \mathbf{CQ}$ (iii) $\triangle AQB \cong \triangle CPD$ (iv) AQ = CP(v) APCQ is a parallelogram.

Answer.

```
(i) In 	riangle APD and 	riangle CQB,
DP = BQ[Given]
\angle ADP = \angle QBC [Alternate angles (AD \parallel_{BC} and BD is transversal)]
AD = CB [Opposite sides of parallelogram]
\therefore \bigtriangleup APD \cong \bigtriangleup CQB [By SAS congruency]
(ii) Since \triangle APD \cong \triangle CQB
\Rightarrow AP = CQ[By C.P.C.T.]
(iii) In \triangle AQB and \triangle CPD,
BQ = DP[Given]
```

```
\angle ABQ = \angle PDC [Alternate angles (AB \|^{CD} and BD is transversal)]
AB = CD[ Opposite sides of parallelogram ]
\therefore \triangle AQB \cong \triangle CPD[ By SAS congruency]
(iv) Since 	riangle AQB \cong 	riangle CPD
\Rightarrow AQ = CP[By C.P.C.T.]
```

Get More Learning Materials Here : 🗾

(v) In quadrilateral APCQ,

AP = CQ[proved in part (i)]

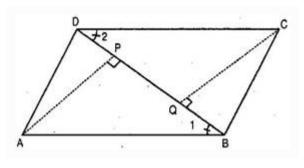
 $\mathrm{AQ}=\mathrm{CP}[$ proved in part (iv)]

Since opposite sides of quadrilateral APCQ are equal.

Hence APCQ is a parallelogram.

Ex 8.1 Question 6.

ABCD is a parallelogram and AP and CQ are the perpendiculars from vertices A and C on its diagonal BD (See figure). Show that:



(i) riangle APB \cong riangle CQD

(ii) $\mathbf{AP} = \mathbf{CQ}$

Answer.

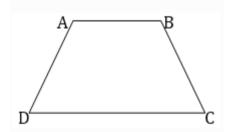
Given: ABCD is a parallelogram. $AP\perp BD$ and $CQ\perp BD$

To prove: (i) $riangle APB \cong riangle CQD$ (ii) AP = CQ

Proof: (i) In $\triangle APB$ and $\triangle CQD$, $\angle 1 = \angle 2$ [Alternate interior angles] AB = CD[Opposite sides of a parallelogram are equal] $\angle APB = \angle CQD = 90^{\circ}$ $\therefore \triangle APB \cong \triangle CQD[$ By ASA Congruency] (ii) Since $\triangle APB \cong \triangle CQD$ $\therefore AP = CQ[By C. P. C. T.$

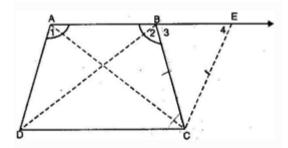
Ex 8.1 Question 7.

ABCD is a trapezium in which $AB \| CD$ and AD = BC (See figure). Show that:



Answer.

Given: ABCD is a trapezium. $AB \| CD$ and AD = BC



To prove: (i) $\angle A = \angle B$ (ii) $\angle C = \angle D$ (iii) $\triangle ABC \cong \triangle BAD$ (iv) Diag. AC = Diag. BD

Construction: Draw CE \parallel AD and extend AB to intersect CE at E.

Proof: (i) As AECD is a parallelogram.[By construction] $\therefore AD = EC$

Get More Learning Materials Here : 💴

But AD = BC [Given] $\therefore BC = EC$ $\Rightarrow igtriangle 3 = igtriangle 4$ [Angles opposite to equal sides are equal] Now $\angle 1 + \angle 4 = 180^\circ$ [Interior angles] And $\angle 2 + \angle 3 = 180^\circ$ [Linear pair] $\Rightarrow \angle 1 + \angle 4 = \angle 2 + \angle 3$ $\Rightarrow \angle 1 = \angle 2[\because \angle 3 = \angle 4]$ $\Rightarrow \angle A = \angle B$ (ii) $\angle 3 = \angle$ C[Alternate interior angles] And $\angle D = \angle 4$ [Opposite angles of a parallelogram] But ${igstarrow 3} = {igstarrow 4}$ [riangle BCE is an isosceles triangle] $\therefore \angle C = \angle D$ (iii) In riangle ABC and riangle BAD, AB = AB [Common] $\angle 1 = \angle 2$ [Proved] AD = BC [Given] $\therefore \triangle ABC \cong \triangle BAD[By SAS congruency]$ (iv) We had observed that, $\therefore \triangle ABC \cong \triangle BAD$

 \Rightarrow AC = BD [By C.P.C.T.]

Get More Learning Materials Here : 💴

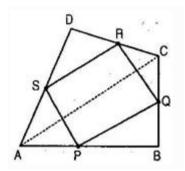
<u>Exercise 8.2 (Revised) - Chapter 8 - Quadrilaterals - Ncert Solutions class 9 -</u> <u>Maths</u>

Updated On 11-02-2025 By Lithanya

Chapter 8 - Quadrilaterals - NCERT Solutions for Class 9 Maths

Ex 8.2 Question 1.

ABCD is a quadrilateral in which P, Q, R and S are the mid-points of sides AB, BC, CD and DA respectively (See figure). AC is a diagonal. Show that:



(i) SR AC and SR = ¹/₂AC
(ii) PQ = SR
(iii) PQRS is a parallelogram.

Answer.

In riangle ABC, P is the mid-point of AB and Q is the mid-point of BC.

Then PQ ||AC and $PQ = \frac{1}{2}AC$ (i) In $\triangle ACD, R$ is the mid-point of CD and S is the mid-point of AD.

Then $SR \parallel AC$ and $SR = \frac{1}{2}AC$ (ii) Since $PQ = \frac{1}{2}AC$ and $SR = \frac{1}{2}AC$

Therefore, $\mathbf{PQ} = \mathbf{SR}$ (iii) Since $PQ \| AC$ and $SR \| AC$

Therefore, PQ II SR [two lines parallel to given line are parallel to each other]

Now PQ = SR and $PQ \|SR$

Therefore, PQRS is a parallelogram.

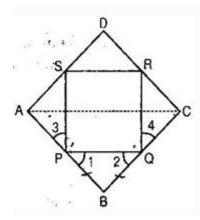
Ex 8.2 Question 2.

ABCD is a rhombus and P, Q, R, S are mid-points of AB, BC, CD and DA respectively. Prove that quadrilateral PQRS is a rectangle.

Answer.

Given: P, Q, R and S are the mid-points of respective sides AB, BC, CD and DA of rhombus. PQ, QR, RS and SP are joined.

Get More Learning Materials Here : 📕



To prove: PQRS is a rectangle.

Construction: Join A and C.

Proof: In $\triangle ABC, P$ is the mid-point of AB and Q is the mid-point of BC. $\therefore PQ ||AC$ and $PQ = \frac{1}{2}AC$

In $\triangle ADC$, R is the mid-point of CD and S is the mid-point of AD. $\therefore SR ||AC$ and $SR = \frac{1}{2}AC$ From eq. (i) and (ii), $PQ^{||}SR$ and PQ = SR $\therefore PQRS$ is a parallelogram.

Now ABCD is a rhombus. [Given]

 $\therefore AB = BC$ $\Rightarrow \frac{1}{2}AB = \frac{1}{2}BC \Rightarrow PB = BQ$

 $\therefore \angle 1 = \angle 2$ [Angles opposite to equal sides are equal]

Now in triangles APS and CQR, we have,

AP = CQ[P and Q are the mid-points of AB and BC and AB = BC]

Similarly, AS = CR and PS = QR [Opposite sides of a parallelogram]

 $\therefore riangle \mathrm{APS} \cong riangle \mathrm{CQR} \ [\mathrm{By} \ \mathrm{SSS} \ \mathrm{congreuancy}]$

$$\Rightarrow \angle 3 = \angle 4$$
 [By C.P.C.T.]

Now we have $\angle 1 + \angle SPQ + \angle 3 = 180^\circ$

And $\angle 2 + \angle PQR + \angle 4 = 180^{\circ}$ [Linear pairs] $\therefore \angle 1 + \angle SPQ + \angle 3 = \angle 2 + \angle PQR + \angle 4$

Since $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$ [Proved above] $\therefore \angle SPQ = \angle PQR$

Now PQRS is a parallelogram [Proved above] $\therefore \angle SPQ + \angle PQR = 180^{\circ}$ (iv) [Interior angles]

Using eq. (iii) and (iv), $\angle SPQ + \angle SPQ = 180^{\circ} \Rightarrow 2\angle SPQ = 180^{\circ}$ $\Rightarrow \angle SPQ = 90^{\circ}$

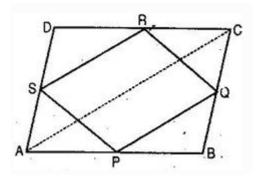
Hence PQRS is a rectangle.

Ex 8.2 Question 3.

ABCD is a rectangle and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.

Answer.

Given: A rectangle ABCD in which P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. PQ, QR, RS and SP are joined.



To prove: PQRS is a rhombus.

Construction: Join AC.

Proof: In $\triangle ABC$, P and Q are the mid-points of sides AB, BC respectively. $\therefore PQ ||AC$ and $PQ = \frac{1}{2}AC$ In $\triangle ADC$, R and S are the mid-points of sides CD, AD respectively.

Get More Learning Materials Here : 🗾

 $\therefore SR ||AC \text{ and } SR = \frac{1}{2}AC$ From eq. (i) and (ii), PQ ||SR and PQ = SR \therefore PQRS is a parallelogram.

Now ABCD is a rectangle. [Given] $\therefore AD = BC$ $\Rightarrow \frac{1}{2}AD = \frac{1}{2}BC \Rightarrow AS = BQ$ In triangles APS and BPQ, AP = BP[P is the mid-point of AB]

 $\angle \mathrm{PAS} = \angle \mathrm{PBQ} \, [\, \mathrm{Each} \, 90^\circ]$

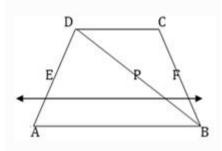
And AS = BQ[From eq. (iv)] $\therefore \triangle APS \cong \triangle BPQ$ [By SAS congruency] $\Rightarrow PS = PQ[By C.P.C.T.]$

From eq. (iii) and (v), we get that PQRS is a parallelogram. $\Rightarrow PS = PQ$ \Rightarrow Two adjacent sides are equal.

Hence, PQRS is a rhombus.

Ex 8.2 Question 4.

ABCD is a trapezium, in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E, parallel to AB intersecting BC at F (See figure). Show that F is the mid-point of BC.



Answer.

Let diagonal BD intersect line EF at point P.

In $\triangle DAB$,

E is the mid-point of AD and EP ||AB| :: EF ||AB (given) P is the part of EF

 $\therefore P$ is the mid-point of other side, BD of riangle DAB.

[A line drawn through the mid-point of one side of a triangle, parallel to another side intersects the third side at the mid-point]

Now in riangle BCD,

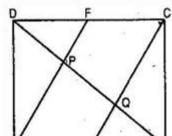
P is the mid-point of BD and $PF \|DC| : EF \|AB$ (given) and $AB \|DC$ (given)

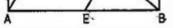
 $\therefore EF \parallel DC$ and PF is a part of EF.

 \therefore F is the mid-point of other side, BC of riangle BCD. [Converse of mid-point of theorem]

Ex 8.2 Question 5.

In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (See figure). Show that the line segments AF and EC trisect the diagonal BD.





Answer.

Since *E* and *F* are the mid-points of *AB* and *CD* respectively. $\therefore AE = \frac{1}{2}AB$ and $CF = \frac{1}{2}CD$(i)

But ABCD is a parallelogram. $\therefore AB = CD$ and $AB||_{DC}$ $\Rightarrow \frac{1}{2}AB = \frac{1}{2}CD$ and $AB||_{DC}$ $\Rightarrow AE = FC$ and $AE||^{FC}$ [From eq. (i)] $\therefore AECF$ is a parallelogram.

 \Rightarrow FA \| CE \Rightarrow FP \| CQ [FP is a part of FA and CQ is a part of CE]

Since the segment drawn through the mid-point of one side of a triangle and parallel to the other side bisects the third side.

Get More Learning Materials Here : 🎫

In $\triangle DCQ$, F is the mid-point of CD and \Rightarrow FP||CQ $\therefore P$ is the mid-point of DQ. $\Rightarrow DP = PQ$ Similarly, In $\triangle ABP$, E is the mid-point of AB and $\Rightarrow EQ ||AP$ $\therefore Q$ is the mid-point of BP. $\Rightarrow BQ = PQ$ From eq. (iii) and (iv), $DP = PQ = BQ \dots \dots (v)$ Now BD = BQ + PQ + DP = BQ + BQ + BQ = 3BQ $\Rightarrow BQ = \frac{1}{3}BD$ From eq. (v) and (vi), $DP = PQ = BQ = \frac{1}{3}BD$ \Rightarrow Points P and Q trisects BD.

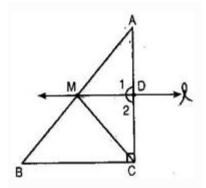
So AF and CE trisects BD.

Ex 8.2 Question 6.

ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D.

Answer.

(i) In riangle ABC, M is the mid-point of AB [Given]



 $MD \| BC$ $\therefore AD = DC$ [Converse of mid-point theorem]

Thus D is the mid-point of AC. (ii) $l \| BC$ (given) consider AC as a transversal. $\therefore \angle 1 = \angle C$ [Corresponding angles] $\Rightarrow \angle 1 = 90^{\circ} [\angle C = 90^{\circ}]$

Thus MD \perp AC. (iii) In \triangle AMD and \triangle CMD, AD = DC [proved above] $\angle 1 = \angle 2 = 90^{\circ}$ [proved above] MD = MD [common] $\therefore \triangle$ AMD $\cong \triangle$ CMD [By SAS congruency] \Rightarrow AM = CM [By C.P.C.T.]

Given that M is the mid-point of AB.

 $\therefore AM = \frac{1}{2}AB$ From eq. (i) and (ii), $CM = AM = \frac{1}{2}AB$

Get More Learning Materials Here : 💶

